پاسِّ	سؤال	عنوان
r.r	v	فصل 1 - تغيّر و گوناكونى رمزهاى زندگى
Yiv	ra	فصل r - تكنولوزى زيستى
rrv	He	فصل
rrr	Q 0	فصل ب - تغيير و تحول كونهها
ru.	9V	فصل ه - زنتيك جمعيتها
r9q	ar	فصل 9 - پويايى جمعيتها و اجتماعات
rva	1.9	فصل V - انواع رفتار
rıs	IYY	فصل 1 - شارش انرزى در جانداران
r.v	10.	فصل 9 - ويروس - باكترى
M1/	194	فصل • - آغازيان
rrr	110	فصل 11 - قارجها

آنز يم را، نظر يهى يكى ثن - يكى آنزيم ناميدند.

ا- تقاوت افراد سـالم و مبتلا بـه بيمارى آلكاپتونوريـا در عدم مـىبـاشـ.

Y
٪) وجود آنزيم تجزيـكنندهى هموجنتيسيك اسيد در ادرار افراد بيمار

1) توليد هموجنتيسيك اسيد در افراد سالم

「) و مواد حاصل از تجزيـه
(A)
(B)
(C)
C ${ }^{〔}$
C و B (r

A ${ }^{(r}$
B A (1

دارد؟
 F F در اين مسير آسيب ديده است؟
٪
٪ ز
「 ز ز
（）زن

شود؟

 －V در مسير متابوليكى زير اكر آنزيم Y غيرفعال شود، كدام يك انجام نمىگيرد؟ X آرزينين

 مىىدهد؟

> ا- جهش يـافتهى اول در محيط حداقل بـا بودن مادهى E ، D يـا C رشد پییدا مىكند.

r－جهش يـافتهى سوم در محيط حداتل بـا بودن مادهى C رشد مىكند．

$$
\begin{aligned}
& \rightarrow \mathbf{D} \rightarrow \mathbf{E} \rightarrow \mathbf{C} \text { (r }_{r} \rightarrow \mathbf{D} \rightarrow \mathbf{C} \rightarrow \mathbf{E} \text { () }
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \mathbf{E} \rightarrow \mathbf{D} \rightarrow \mathbf{C} \text { (r }
\end{aligned}
$$

（ ）برخى آنزيمها

٪ ٪ پروتئين
（
r
l（
｜ 1 －بـا توجه بـه شكل مقابل كدام يك نـادرست است؟
 Y（「）در مرحله ٪）در لولـههاى 「

「
RNA（ ${ }^{r}$
1）آنزيم
سا－در بيماران مبتلا بـه آلكاپیتونوريا：
（）زن سـازندهى آنزيم تجزيـهنتدهى هموجنتيسيك اسيد جهش يـافته است
「 ץ）زن سـازندهى هموجنتيسيك اسيد جهش يـافته است． ٪）آنزيم تجزيـكنندهى هموجنتيسيك اسيد وجود دارد．
كانون فرهنگى آموزش زيست ييشدانشكاهى

$$
\text { r) احتمالاً مىتوانند آنزيم } 1 \text { را بسازند. }
$$

¢

1) احتمالاً نمىتوانتد آنزيم ${ }^{\text {r }}$ ا با بسازند.
 اه - بـه طور معمول، كپپ نوروسپپرا كراسا جاندارى ... است و در محيط كشت حداقل آن، وجود ضرورى استـ. (آزهايشى سنجش -

(آزاد غيرپָشكى) -
٪ ¢ اسيدچرب
r IV
() ارنيتين
رمزهاى وراثتتى
 (A,C,G,T)

 \% با توجه به آن كه . آمينواسيدها است. ّ رمز UAA ، UAG و UGA رمزهاى پايان پروتئينسازى هستند. در اين صورت يك آمينواسيد ممكن است بيش از يك رمز داشته باشد.
RNA
٪ RNA پل ارتباطى بين DNA و پروتئينسازی است.
 مورد استفاده قرار گيرد.
\% \% طى فر آيندى به نام رونويسى، مولكولى به نام RNA ساخته مى شود. بدين ترتيب اطلاعات DNA به RNA منتقل مى شود. * * نوع خاصى از RNA مى تواند از هسته به سيتوپِلاسم بيايد و در سيتوپِلاسم طى فر آيند ترجمه از روى آن پپروتئين ساخته شود. ٪ بر رسى نشان داده است كه در سلولهايى كه فعاليت پروتئينسازى شديد است، RNAى فراوانى هم يافت مى شود و برعكس در سلولهـايـى

* \% آن نوع RNA كه اطلاعات را از DNA به ريبوزومها حمل مى كند، mRNAى بيك ياmRNA ناميده مى شود. * در mRNA كنار يكديگر رديف كند.

رونويسى
 ٪ ٪ در سلولهاى پروكاريوتى فقط يك نوع آنزيم RNA پلهمراز وجود
 انواع RNA پِلىمراز يو كاريوتى

مراحل رونويسى

sرarv اول:

 رونويسى قرار دارد جايگاه آغاز رونويسى به اولين نوكلئوتيدى از DNA كَته مى شود كه رونويسى مىشود. هرهلمى دو؟: RNA پلىمراز، دو رشتهى DNA را از يكديگر باز مى كند. يعنى موجب شكستن پيوند هيدروثنى بين دو رشتهى DNA مىشود.
sرars سوه:
(RNA \% \%
 ريبونوكلئوتيد مكمل قرار مى گيرد. در رونويسى از قوانين جفت شدن بازها (رابطهى مكملى) استفاده مىشود.

٪ هر ريبونوكلئوتيد جديد به ريبونوكلئوتيد قبلى در رشتهى RNAى در حال ساخت متصل مى دشود.
 ٪ ٪ ريبونوكلئوتيدهاى RNA در طى رونويسى با پيوندهاى كووالان (فسفودىاستر) به يكديگر متصل مىشوند. \% \% رونويسى تا زمانى كه RNA پلىمراز، جايگاه پايان رونويسى را نسخهبردارى نكرده است، ادامه دارد. مراصل (ونويسى:

پی پNA متصل مى شوند.

در منطقهاى نزديك به رامانداز
ثن، پيج و تاب DNA باز مىشود و دو رشتهى آن از هم

نوكلئوتيدهاى مكمل در برابر
يكى از رشتهها قرار مى گيرند و و وري به كمك RNA پیلىمراز به هم

نقش RNA تָلىمراز در (ونويسى:
ا - شناسايى راهانداز
DNA Y ش - Y RNA تـ تشكيل پيوند فسفودىاستر بين ريبونوكلئوتيدها در زنجيرهى F

از مقايسهى همانندسازى DNA با رونويسى مىتوان نتيجه گرفت:
ا - در همانندسازى DNA مولكول جديد ساخته شده DNA است، درحالى كه در رونويسى مولكول ساخته شده از جنس RNA است.

 روى میدهد. در كلرويالاست و ميتو كندرى نيز از روى DNAى اين اندامكها رونويسى انجام مى گيرد.

$$
\begin{aligned}
& \text { حتَّنگّى شناسايیى رمز DNA } \\
& \text { "\% نيرنبر گ و همكاران او از mRNA براى شناسايى و كشف رمز DNA استفاده كردند. }
\end{aligned}
$$

 آزمايشى كه واجد بيست نوع آمينواسيد و مايع استخراج شده از سيتوپياسم سلول بود قرار دادند، تا رشتهى پلى پیپتيدى ساخته شود．تجزيـهـى رشتهى پِلى پیتيدى ساخته شده، مشخص نمود كه از بين •r نوع آمينواسيد موجود در لوله فقط آمينواسـيد فنيـل آلانـين در ســاختار رشـتهى پِلى پيتيدى شركت دارد و رمز UUU مربوط به اسيدآمينهى فنيل آلانين است．رمز UUU در RNA مكمل رمز AAA در DNA است． با تكرار آزمايشهايى مشابه آزمايش نيرنبر گ، رمزهاى ساير آمينواسيدها بر روى RNA و مكمل اين رمزها در رشتهى الگوى ．DNA \％\％هر رمز سه نوكلئوتيد mRNA را يك كدون مىنامند．كدونها عمومى هستند، يعنى در جانداران يكساناند．

（كانون فرهنگَى آموزش）

1＾－شكل مقابل مربوط به فعاليت كدام آنزيم است؟
RNA（।
I
II 1 RNA（r
III پیلى RNA（ヶ）

ا－براى ساخت كداميك از RNAهاى زير آنزيم RNA پلىمراز به تنهايـ راهانداز را شناسايى مىكند؟

٪）انواع RNA لِلىمرازهـا
III پپNA（r
I
II يلحى RNA（1

「1（\％	\wedge（ r	Q（r	${ }^{+} 1$
Y Y－\％			
${ }_{\mu}{ }^{(}$	r（r	r ${ }^{\text {r }}$	1 （1

ץ

$$
\begin{aligned}
& \text { rRNA - II يلىمراز RNA (ヶ }
\end{aligned}
$$

با توجه به شكل مقابل به دو سؤال زير پـاسخ دهيد．

$$
\begin{aligned}
& \text { 1) دئوكسى ريبوز - پيوند پپتيدى } \\
& \text { (r تيمين - متيونين رين } \\
& \text { r) دئوكسى ريبوز - آمينواسيد }
\end{aligned}
$$

\qquad ६؟－كدام يك صحيح است؟ در مرحله
r r

（）（ ）نزديك راه انداز زن، RNA پِلىمراز به DNA متصل مىشود．

．

روى آن رونويسى شده، چند نوكلئوتيد آدنيندار وجود دارد؟

$$
v(r \quad r(r) r(1)
$$

اس－كدام مورد در جانداران اتفاق نمىافتد؟
（）توليد يك نوع آنزيم توسط چند نوع ثن
¢）توليد يك نوع mRNA توسط چِند نوع ڤن
mRNA توليد چند نوع آنزيم توسط يك نوع（r）
（كانون فرهنكى آموزش）
RNA（ヶ）
（كانون فرهنگى آهوزش）
r

「
mRNA تش با
 جايگاه آغاز رونويسى（r mRNA（） سّ－در انواع جانداران ． （）چند نوع ثن نمىتواند ساخت يك نوع mRNA را رهبرى كند．「）چند نوع ثن نمىتوانند يك نوع آنزيم بسازند．
 （）شكستن پيوند هيدروزنى بين دو زنجيرهى DNA「

هـ－كدام آنزيم از زن سـازندهى آنزيم تجزيـهكنندهى هموجنتيسيك اسيد رونويسىى مىكند؟
II يلىمراز RNA (r
I پيلىمراز RNA (Y
(
عץ- گزينهى صحيـح در مورد آنزيـمها كدام است؟
 ¢）شكنندهى پيوند هيدروزنـى مىتواند پيوند فسفودىاستر تشكيل دهد．
 ץ）شكنندهى پپيوند فسفودىاستر مىتواند پيوند هيدروزنـى را بشكند．

1）ثن انسولين ＾＾－بـا توجه بـه شكل مقابل كه رونويسى يك زن در سلول تخم را نشـان مىدهد كداميك نـادرست است؟ ।）چند RNA و يك زن را نشـان مىدهد．「「）در مولكول A باز يوراسيل وجود ندارد． ¢）نوع كربوهيدرات در مولكول B، ريبوز است． هץ－سـاختار پرمانغدى كه در هنگام رونويسى ايجاد مىشـود مربوط بـه ．．．．．．．．．．．．．．نوع زن و ．．．．．．．．．．．．．نوع RNA مى بـاشد．
 （F．

Y

1）نوع آنزيم شركتكننده در دو فرآيند
r）نوع آنزيم تشكيلدهندهى پیيوند فسفودیاستر

 （كانون فرهنگَى آهوزش）

$19(4$ S4（4）	\wedge（ ${ }^{\text {r }}$	$V(r$	$r(1$
	$91(r$	H1r r．（l	
（N1－（w）	（F\＆－مونومرهاى RNA وRNA		
¢）فسفودىاستر－فسفودىاستر	ץ）فسفودىاستر－پیتیدى	「 هيدروزثنى－هيدروزنى	）
（آ⿰氵⿰亻⿱丶آ（）			
Y ${ }^{4}$	r r	r r	1 （1
（1）		واريوت كدام نـادرست است	در پروتئينسازیى جا
		فى فقط از روى يك رشته	）
		رشته بـه عنوان الكو عمل مىك	（r）در همانندسازى
「）رونويسى در بـغضى قسمتها از روى يك رشته و در بعضى مناطق از روى هر دو رشتهى مكمل DNA صورت مىگيرد．			
（ $\wedge \Delta$－			
RNA（ヶ）	I	III	II پ\％
	140－ساخته شـدن RNA از روى DNA		
	「）رونويسى－RNA	Y ¢ همانتدسازی－هليكاز	）（）ترجمه－ليكاز
（آزاد 人1－خا			
rRNA ${ }_{(}{ }^{\varphi}$	tRNA（ Γ	mRNA با كمك rRNA（r	mRNA（1

> تر جمه (هروتئينسازى)
> *
شا tRNA＊
tRNA بررسى ساختار
＊
 ． ＊آنتى كدون توالى سه نوكلئوتيدى بر روى tRNA است كه با هيج باز ديگرى از tRNA جفت نشدهاند و با يكى از كدونهاى mRNA مكمـل است．براى مثال tRNA ای كه آنتى كدون GAA دارد به كدون CUU متصل مى شود و ناقل لوسين است． نكتَّ：آنتى كدون تعيين مىكند كه آن tRNA چه آمينواسيدى را بايد حمل كند．
 آمينواسيد است．

1- مر حلهى آغاز
در اين مر حله بخش كوچى ريبوزوم در مجاورت كدون آغاز (AUG) به mRNA متصل مىشود. اولينtRNA كه tRNA آغاز گر نـام دارد

ساختار ريبوزوم براى ترجمه كامل مىشود. AUG متيونين را رمز مى كند و URNA آغ آغاز گر كه آنتى كدون UAC دارد، ناقل متيونين است.
F - مر حلهى ادامه

آنتى كدونها با كدونها جفت شده، سپس آمينواسيد موجود در جايگاه P از tRNA جدا مىشود.

همزمان با خالى شدن جايگاه P و جدا شدن tRNA، جابهجايى صورت مى گيرد و ريبوزوم به اندازهى يک كدون در طول mRNA به پيش مىرود.
 شده و براى ورود tRNAى حامل آمينواسيد جديد آماده مىشود. مراحل مذكور تا قرار گرفتن كدون پايان در جايگاه A ادامه مى يابد. F-
٪ " به دنبال قرار گيرى يكى از كدونهاى پايانى در جايگاه A، عامل پايان ترجمه وارد جايگاه A مىشود.

 مى شوند.

نكاتى دربار هى پروتئينسازى (تر جمه)

(آغاز گر (كه حامل آمينواسيد متيونين است) فقط در جايگاه P قرار مى گيرد.
r- r- رمز آغاز ترجمه (AUG) فقط در جايگاه P

F

 §- در جر يان تر جمهى يك mRNA كه داراى k كدون میباشد (با احتساب كـدون پايــانى) ريبـوزوم بـر روى k-r ، mRNA بـار حركـت

مى كند.
V- ע در جر يان تر جمهى mRNA كه داراى k كدون مىباشد، (k-Y) پيوند پیتيدى تشكيل مىشود. ^- همواره به دنبال تشكيل هر پيوند پپتيدى ريبوزوم يك بار بر روى mRNA حر كت مى كند. به همين دليل همواره تعداد حر كات ريبوزوم بـا تعداد پيوندهاى پپتيدى تشكيل شده برابر است.

> زنهاى يو كاريوتى گسستهاند.

٪ ٪ زنهاى گسسته، زنهايى مىباشند كه داراى توالىهايى به نام اگزون و اينترون هستند. به طورى كه حاصل رونويسى چنين زنهايى، RNAى اوليه مىباشد كه داراى مناطقى تحت عنوان رونوشت اگزون و رونوشت اينترون است. (اوليه در يو كاريوتها درون هسته ساخته شده و در همانجا متحمل يك سرى تغييراتى شده و به mRNANA \&

٪ \% رونوشت اينترونها در RNAى اوليه حذف شده و رونوشت اگزونها به يكديگر متصل مىشود.

آر كى باكترىها عبار تند از : متانوثنها ارْ ترموفيلها و هالوفيل ها. (مربوط به فصل 9)

ايجاد مىشود.
تذكرهههه: در يوكاريوتها حذف رونوشت اينترونها و اتصال رونوشت اگزونها به يكديگر درون هسته صورت مى گيرد و mRNAى بالغ
جهت تر جمه از هسته به سيتوپالاسم مى آيد.

زيست پيشدانشگاهى	كانون فرهنگى آموزش	18

A－بزر
A－كو حك（
P－بزرگ（Y
（ ）－كو جك（

Y）（r	$r \cdot(r$	19 r	111
$\wedge *$	${ }^{*}(r$	ry（r	r． 1

بـا توجه بـه شكـل مقابل بـه دو سؤال زییر پـاسـخ دهيد．
世ه－كدام يك نادرست است؟ اگر آمينواسيد ا ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．باشـد، 1）فنيل آلانين－باز B آدنين است． ץ）متيونين－در قسمت A سيتوزين وجود ندارد．
r）سيستئين－بـاز B آدنين است．
٪）لوسين－در قسمت A قطعاً سه نوع باز وجود دارد．
．．．．．．．．．．．．．در اين سـاختار－DF
（）در قسمت r Y 「

$$
\begin{aligned}
& \text { () كدونهاى ورودى به جايكاه A ريبوزوم } \\
& \text { ¢ } \\
& \text { 「) كدونهايى كه مشتركاً وارد جايگاه A و P مىشوند. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ب) آغاز - پایان } \\
& \text { r) ادامه - آغاز } \\
& \text { 「 ادامه - پاییان } \\
& \text { 1) آغاز - ادامه }
\end{aligned}
$$

> رونو يسـى انجام مـدلهند؟
$\mu_{(\mu}^{\mu} \mu_{\mu} \quad \mu_{\mu} \quad 1$（1） ه人

CAU（ ${ }^{〔}$
AUC（ ${ }^{(r}$
AGU（r
UGA（1
Qq－سـه نوكلئو تيد انتهايـى بـازويى از tRNA كه متيونين بـه آن متصل مىشـود، از روى كدام توالـى در DNA سـاخته شـده است؟
GGT（ ${ }^{〔}$
GGU（ Γ
TAC $\left.{ }^{(}\right)$
UAC（1
－¢－انواع مولكولهاى مختلف tRNA از تمام جهات زير بـه هم شبيـهاند بـه جز：
「
1）نـومى عمل
ץ توالى
ا؟－سنتز tRNA در پـلاسموسيتهـا كجا انجام مىگیرد و كدام سـاختار آن در انتقال آمينواسيد شـركت مىكند؟

 （VI－سراسری）

دارایى چند آمينو اسيـد خواهد بود؟

سء－كدام يك در مورد شكل مقابل كه يكى ازمراحل ترجمه را نشـان مىدهد، نـادرست است؟
（）آخرين آنتىكدونى كه در جايگاه A ريبوزوم وارد مىشود، GAA است．

r）ورود مولكول A باعث شكستن پيوند بين آخرين tRNA بـ پـلى پیتيد مىشود． ¢

هя- طرح مقابل قسمتى از مولكول DNA و چهار آمينواسيد انتخاب شده بـهوسيلـى مولكول tRNA را نشـان مـىدهد. رمز كدام آمينواسيد
(VP - (ساساس)

(II
A	T
T	A
G	C
T	A
A	T
C	G
A	T
A	T
C	G

. ${ }^{\text {D }}$ كدون داشته است است (
「
r) در ساخت پِلپپتيد اه مولكول آب آزاد شده است.

(كانون فرهنگى آموزش)

بـا توجه بـه شكـل مقابل كدام نـادرست است؟ -VI () كدون مربوط به آمينواسيد 1 فقط در جايكاه P ترجمه شده است.
 r

-VY or H
$01(r$
D. 1 r
$49(1$
كـ

A تشكيل پیيوند هيدروزنـى در جايكاه
P P ش ش

A ش) شكسته شدن پيوند هيدروزثنى در جايكاه
كانون فرهنگى آموزش زيست ييشدانشگاهى

٪）بخش كوچكتر ريبوزوم
（آغاز ترجمه، ابتدا كداميك به
r اتصال آنتى كدون آغاز به mRNA

¢¢－با توجه به شكل مقابل ريبوزوم از مرحله آغاز تا پـايان ترجمه چند بار روى mRNA حركت خواهد كرد؟

．بين ．．．．．．．．．．．．．．．．．رابطهى مكملى وجود دارد－
ساختار ريبوزوم برای ترجمه چه هنگامى كامل مىشود؟－Vه

「）با ايجاد رابطهى مكملى بين كدون و آنتىكدون آغاز

> ب) آنتى كدون UAA با كدون
> ٪

1) بخش بزرگ ريبوزوم آنتىكدون آغاز
（）عامل پايان ترجمه با كدون پايان r

ب）آنتى كدون ACU
آغازگر AUG（r
r عامل پا （ آخرين آل

V9－يس از ورود tRNA مقابل در مرحله آغاز ترجمه، كدام اتفاق مى افتد؟

A ج）انتقال tRNA جديد به جايكاه
A）انتقال متيونين به جايكاه

اولين كدونى كه در جايكاه A قرار مى كيرد، كدام است ؟
AUG（ ${ }^{\varphi}$
CCU $\left.{ }^{(}\right)$
GGA（ Γ
UUG（1

（كانون فرهنگى آدوزش）
A（Y）كدون ورودى به جايكاه
（）كدون ورودى به جايكاه
P
A آنتى آلدون ورودى به جايكاه
 （كانون فرهنگى آموزش）

آنتى كدوون GCA در جايكاه A ريبوزوم باشد، در اين حالت، آنتىكدون جايكاه P كدام است؟

GATGTACTTACGTTAGC

AUC（ ${ }^{\varphi}$
AAU $\left.{ }^{(}\right)$
CGU（r
UUA（1

٪
「
1）توليد اگزون
〒（ ايجاد بيوند فسفودى استر ساختار اينترون
「）توليد عامل تشكيل پيوند فسفودى استر ساختار اگزون

Y）اتصال رونوشت اكزونها در درون هسته انجام مىیيرد．
＾ه－كدام گزينه در مورد سلول يوكاريوتى نـادرست است؟
1）اكزونها هم رونويسى و هم ترجمه مى شوند．

 （كانون فرهنگى آدوزش）

حداكثر چند نوع مونومر مىتواند داشته بـاشد؟

$$
19(4 \quad r \cdot(r \quad \text { ricter }
$$

كانون فرهنگى آموزش زيست پيشدانشگاهى	كانون فرهنگى آموزش	
(آزاد (\%) - -		
	Δ (r	$r(1$
	$r{ }^{*}$	Y ${ }^{\text {r }}$

CAU و UUU ، ACU (\uparrow GUA و AAA ، UGA ($\stackrel{r}{ }$
CAU و UUU (r GUA وAAA (1

مورد استفاده قرار مىگيرند، به ترتيب كدام است؟

 جايكاه A ريبوزوم مىشود؟
AUG. CCA.AAU. CCC.GAG.UUC. UCC. AUC
AGG (\uparrow
AAG (${ }^{r}$
UUC ${ }^{(r}$
UCC ${ }^{(1}$
(ساسرى •१- خا(e از كشور)
تر.، نسبت به سايرين در جايكاه متفاوتى از ريبوزوم رخ مىدههد. \qquad I 1 - در فرايند ترجمه، .

() استقرار عامل پايان ترجمه بر روى mRNA

r- تنظيم بيان رن

و از آن استفاده مىشود و در مواقعى ديگر زن غيرفعال بوده و از آن استفاده نمىش ٪ \% وقتى يك زن مورد استفاده قرار مى گيرد، مى گويند آن زن بيان شده و به اصطلاح روشن است.

تنظيم بيان زن در يوكاريوتها علاوه بر پاسخ به تغيير شرايط محيط، مثل در دسترس بودن يار يا نبودن يك منبع غذايى، در نمو جاندار نيز نقش مهمى دارد.
 همه اين سلولها داراى مادمى رنتيكى يكسان مىباشند. علت تفاوت بين اين سلولها در شكل و كار و اخـتـلاف در نــوع پـروتئينهـاى آنهــا مربوط به تفاوت در بيان زنهاست.
 سلولهاى پوششى يا عصبى همواره خاموش است.

سلولهايى كه شكل و كار متفاوتى دارند، پروتئينهاى مختلفى دارند. در واقع آنچه كه فنوتيب را تعيين مى كند، نوع پروتئينهاست.
تنظيم بيان زن در سطوح مختلف

تنظيم بيان رثن در پروكاريوتها

 ٪

خاموش مى كنند. "\% پروتئين مهار كننده خود محصول زنى به نام زن تنظيم كننده است.

> ايران لك و متابوليسم لاكتوز

* * متابوليسم لاكتوز در اشريشياكلاى نيازمند سه آنزيم است كه اين آنزيمها محصول إِران سه زنى به نام اپپران لك است. ** وقتى لاكتوز در محيط نيست، غلظت هر سه آنزيم اندكى است. اما پس از حضور لاكتوز در محيط غلظت هر سه آنز يم ياد شــده، هماهنـگ بــا هم افزايش مى يابد.

 " ** در نبود لاكتوز، مهار كننده به إپراتور متصل شده و إپران خاموش است *٪ با بودن لاكتوز در محيط روده، لاكتوز درون باكترى به آلولاكتوز تبديل مىشود. آلولاكتوز به مهار كننده متصل شده و تغييراتـى در شـكل آن
 مى كند در نتيجه إران روشن مىشود در نتيجه إران روشن مىشود. نكتَ: آلولاكتوز را عامل تنظيم كننده و مهار كننده را پروتئين تنظيم كننده مىنامند.
تنظيم بيان رن در يوكاريوتها

 بِلىمراز و ساير عوامل رونويسى قرار مى گيرد و عوامل رونويسى متصل به رامانداز را فعال مى كند.

$$
\begin{aligned}
& \text { جهش } \\
& \text { * * هر گونه تغيير در ساختار DNA را جهش مىنامند. }
\end{aligned}
$$

** جهشى كه در سلولهاى جنسى روى میدهدد، ممكن است به زادهها منتقل شود.
٪٪ اگَر در اثر جهش يك نوكلئوتيد يك زن، با نوكلئوتيد نوع ديگرى عوض شود، جهش از نوع نقطهاى است و جانشينى ناميده مىشود.
انواع جهشهاى نقطهاى از لحاظ تأثير
ا- جهش بى تأثير : گاهى جانشينى ها در بيان زن تأثير ندارد، مثل تبديل كدون UGU به UGC كه هر دو كدون مربوط به آمينواسيد سيسـتئين
هستند تأثيرى در بيان زن ايجاد نخواهد شد.
Y-
ץ- در اثر جهش نقطهاى ممكن است پروتئينى كه ساخته مى شود از لحاظ ترتيب، تعداد يا نوع آمينواسيدها نسبت به پروتئين قبلى متفاوت باشد.
جهش نقطهاى ممكن است منجر به افزايش يا كاهش يك يا چند نوكلئوتيد در زن شود و چون پيام زنتيكى به شكل نوكلئوتيدهاى سـه حرفـى
اثر شديدترى روى ترتيب آمينواسيدهاى پروتئين نسبت به جهش از نوع جانشينى دارد.

